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Structure of a mixed dipolar liquid near a metal surface: A combined approach
of weighted density and perturbative approximations

Sanjib Senapati and Amalendu Chandra
Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016

~Received 12 January 2000!

We study the interfacial structure of a mixed dipolar liquid in contact with a metal surface by using a
combined approach of the weighted density and the perturbative approximations. Both the molecular size and
the dipole moment of various species can be unequal. The metal surface is treated by using the jellium model.
Explicit numerical results are obtained for the interfacial structure of a binary dipolar liquid in contact with a
metal surface of varying electron density. The theoretical predictions are compared with the results of Monte
Carlo simulations and a good agreement is found for the inhomogeneous density, mole fraction, and polariza-
tion profiles of both the species in the interfacial region.

PACS number~s!: 68.45.Da, 61.20.Gy
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I. INTRODUCTION

An understanding of the structure and dynamics of dipo
solvents in the vicinity of metal surfaces is extremely imp
tant for investigations of many electrochemical and surf
processes. Many recent studies have investigated the s
tural properties of pure dipolar liquids near metal surfaces
means of analytical theories@1–7#, computer simulations
@8–17# and also experiments@18,19#. These studies hav
generated significant information about the spatial and or
tational arrangement of dipolar molecules at metal-solv
interfaces. Several studies have also been carried out on
structure of ionic solutions near metal surfaces@20–31#. In
contrast, relatively scant attention has been focused on
structure of mixed dipolar liquids near metal surfaces,
spite the great importance of such interfaces in electroch
istry and surface science. In fact, we are not aware of
theoretical study on this problem. Consequently, the me
fluid interfacial structure of dipolar mixtures is poorly unde
stood. The structure of such an interface is expected to
much more complex than that of a pure solvent-metal in
face because of selective adsoprtion of one species a
surface against the other. This selective adsorption can o
due to unequal molecular size and/or unequal polarity
different components of the mixed solvent. The purpose
the present paper is to present a theoretical study of
selective adsorption and the detailed microscopic structur
a metal-solvent interface involving a mixed dipolar liquid

The present theory is based on a combined approac
the weighted density and the perturbative approximations
the isotropic and anisotropic parts of the solvent densit
Both the molecular sizes and the dipole moments of differ
components can be unequal. Explicit numerical results
obtained for the interfacial structure of a binary dipolar li
uid in contact with a metal surface of varying free-electr
density. The density profiles of both the solvent species
found to be highly inhomogeneous and oscillatory near
surface. The contact density of smaller molecules at the
face increases with an increase of surface electrostatic fi
However, no such noticeable change of the contact den
of bigger molecules is found which can be attributed to
PRE 621063-651X/2000/62~1!/1017~8!/$15.00
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larger contact distance and hence a weaker electrostatic
experienced by these molecules. The mole fraction pro
also shows an oscillatory structure at the interface, indica
the presence of selective adsorption at the metal surface.
polarization profiles at the interface are found to depend n
linearly with the electrostatic field of the metal and exhib
the presence of pronounced orientational order of dipo
molecules near the metal surface. This is most importan
the first layer at the metal surface where the solvent dipo
tend to align parallel to the surface normal.

We have also carried out a Monte Carlo simulation o
binary dipolar mixture confined between two metal surfac
in order to verify the predictions of the present theory. T
separation between the two metal surfaces is taken to
sufficiently large so that a bulk region of homogeneous d
sity for both the species is found in the middle region of t
simulation system. The theoretical predictions are compa
with the results of Monte Carlo~MC! simulations and a good
agreement is found for the inhomogeneous density, m
fraction, and polarization profiles of both the species in
interfacial region.

The organization of the rest of the paper is as follows.
Sec. II we present the theory and the details of Monte Ca
simulations are described in Sec. III. The numerical res
are discussed in Sec. IV. Our conclusions are summarize
Sec. V.

II. THEORY

We consider a dipolar mixture consisting of nonpolar
able dipolar molecules ofn different species. The molecule
are confined between two metal surfaces. The solvent m
ecules are modeled as dipolar hard spheres where both
molecular diameter and the dipole moment of various s
cies can be different and they interact through a short-ra
hard-sphere interaction and a long-range dipole-dipole in
action potential. The dipolar molecules also interact with
two metal surfaces. The interaction of thei th dipolar mol-
ecule of speciesa with the metal surfaces can be written

uw;a
i ~zi ,V i !5uw;a8 ~zi ,V i !1uw;a9 ~zi ,V i !, ~1!
1017 ©2000 The American Physical Society
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where u8 and u9 represent the interaction with the wal
located atz5z8 and z5z9, respectively. Bothu8 and u9
include a short-range isotropic part and an electrostatic
isotropic part. The short-range isotropic part is described
a hard-wall–hard-sphere interaction and the anisotropic
represents the interaction of a dipole with the electrost
field generated by nonuniform electron density of the me
surfaces. Thus,uw;a8 (zi ,V i) can be written as

uw;a8 ~zi ,V i !5uw;a
hw ~ uzi2z8u!2E8~zi !•ma

i , ~2!

whereuw;a
hw (uzi2z8u) is infinity for uzi2z8u,sa/2 and zero

otherwise andE8(zi) is the electric field produced atzi by
the surface charges of the metal wall located atz8. sa and
ma are, respectively, the diameter and dipole vector o
solvent molecule of speciesa with orientationV.

We denotera(r ,V) as the position- and orientation
dependent number density of speciesa of the mixture. In
density-functional theory~DFT!, the grand potential of this
system at fixed temperature, volume, external field, a
chemical potential can be exactly expressed as a functi
of the inhomogeneous density distribution

V̄@ra~r ,V!#5F@ra~r ,V!#

1 (
a51

n E dr dV ra~r ,V!@uw;a~r ,V!2m̄a#,

~3!

whereuw;a(r ,V) is the interaction potential between a mo
ecule of speciesa and the metal wall as given by Eqs.~1!
and ~2!, m̄a is the chemical potential of speciesa, andT is
the temperature. The intrinsic Helmholtz free ener
F@ra(r ,V)# is a universal functional of density and consis
of two parts: an ideal part and an excess part. Minimizing
grand potential of Eq.~3! with respect to density and evalu
ating the chemical potential for the uniform mixture, o
obtains the following expression for the equilibrium dens
of speciesa in presence of the metal surface:

ra~r ,V!5
ra

~0!

4p
exp@2b* ua~r ,V!

1ca
~1!
„r ,V;@ra~r ,V!#…2ca

~1!~ra
~0!/4p!#, ~4!

whereb* 51/kBT, kB is the Boltzmann constant,T is the
temperature,ra

(0) is the uniform bulk density of speciesa,
andca

(1) is the first-order direct correlation function which
given by the functional derivative of the excess free ene
with respect to the density of speciesa @32#. The above
equation is a formally exact relation which, in principle, m
be solved forra(r ,V) if the functional ca

(1) is known. In
practice, however,ca

(1) is generally unknown for inhomoge
neous systems and so must be approximated. The sim
approximation ofca

(1)
„r ,V;@ra(r ,V)#… of an inhomogeneous

system involves a perturbative expansion~to first order! in
terms of the density inhomogeneity which makes use of
second-order direct correlation function of the correspond
homogeneous system and is given by
n-
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ca
~1!
„r ,V;@ra~r ,V!#…2ca

~1!~ra
~0!/4p!

5 (
b51

n E dr 8dV8c̃ab
~2!~r2r 8,V,V8!

3S rb~r 8,V8!2
rb

~0!

4p D , ~5!

where c̃ab
(2)(r2r 8,V,V8) is the second-order direct correla

tion function between speciesa andb of the homogeneous
mixture. The z-dependent first-order correlation functio
ca

(1)(z,V) can be obtained by integrating Eq.~5! over x and
y coordinates. For convenience, we writec̃ab

(2)(r2r 8,V,V8)
in terms of angular functions as follows:

c̃ab
~2!~r2r 8,V,V8!5cab

000~ ur2r 8u!

1cab
110~ ur2r 8u!f110~V,V8!

1cab
112~ ur2r 8u!f112~V,V8, r̂ !, ~6!

where the angular functionsf110(V,V8)5(m̂•m̂8) and
f112(V,V8, r̂ )53(m̂• r̂ )(m̂8• r̂ )2(m̂•m̂8), m̂ and m̂8 are
the unit vectors along dipole moments of particles located
r and r 8, and r̂ 5(r2r 8)/ur2r 8u. In Eq. ~6!, cab

000(ur2r 8u)
represents the isotropic or hard-sphere part and the se
and third terms represent the anisotropic or dipolar parts
the intraspecies and interspecies direct correlation functio
whose analytical solutions are available within integral eq
tion theories such as the mean spherical approxima
~MSA! @33–35#.

Alternatively, one can adopt the weighted density a
proximation ~WDA! in which ca

(1)
„r ,V;@ra(r ,V)#… for the

inhomogeneous density is obtained by evaluating the co
sponding expressionc̃a

(1) for the homogeneous fluid at a
effective densityr̄a(r ,V). Thus, we write

ca
~1!
„r ,V;@ra~r ,V!#…2ca

~1!~ra
~0!/4p!

5 c̃a
~1!
„r̄a~r ,V!…2 c̃a

~1!~ra
~0!/4p!. ~7!

WDA has been shown to provide an accurate treatment
the hard-sphere correlation contributions@36–39#. In the
spirit of earlier work@7,40,41#, we decompose the total first
order direct correlation function into two parts:ca

(1)

5ca;hs
(1) 1ca;ex

(1) , whereca;hs
(1) is the isotropic hard-sphere con

tribution to the first-order direct correlation function an
ca;ex

(1) represents the remaining anisotropic~or excess! contri-
bution which arises from the explicit dipole-dipole electr
static interactions and also from the coupling of electrosta
and hard-sphere interactions. We employ a combined
proach in which we evaluate the isotropic hard-sphere c
tributionca;hs

(1) using WDA and the remaining anisotropic pa
ca;ex

(1) through a perturbative approach by using an equa
similar to Eq.~5! but involving only the anisotropic terms o
the second-order direct correlation function.

Since the density inhomogeneity is only along thez direc-
tion, the expressions for the density of theath species can
now be written in the following form:



PRE 62 1019STRUCTURE OF A MIXED DIPOLAR LIQUID NEAR A . . .
ra~z,V!5
ra;hs~z!

4p
expF2b* uw;a~z,V!1 (

b51

n E dx dy dr 8dV8@cab
110~ ur2r 8u;r0!f110~V,V8!

1cab
~112!~ ur2r 8u;r0!f112~V,V8, r̂ !#@rb~z8,V8!2rb

~0!/4p#G , ~8!
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ra;hs~z!5ra
~0! exp$c̃a;hs

~1! @ r̄a;hs~z!#2 c̃a;hs
~1! ~ra

~0!!%. ~9!

Herec̃a;hs
(1) @ r̄a;hs(z)# refers to the hard-sphere contribution

the first-order correlation function defined through WDA
an effective densityr̄a;hs(z), which is obtained as the
weighted average

r̄a;hs~z!5 (
b51

n E dz8ra;hs~z8!wab@ uz2z8u; r̄a;hs~z!#.

The weight functionwab(z2z8) is calculated by following
the prescription of Denton and Ashcroft@37#. In this scheme,
the weight functions are specified first by normalization co
dition

E dr wab~r !51, a,b51,2 ~10!

which ensures that the approximation is exact in the limit
a uniform mixture and second by requiring that the first fun
tional derivatives ofc̃a;hs

(1) with respect to the densities yiel
the exact two-particle direct correlation functions in the u
form limit. One then obtains the following analytic forms fo
the weight functions

wab~r2r 8!5
c̃ab;hs

~2! ~r2r 8!

] c̃a;hs
~1! /]r

. ~11!

The analytic solutions for the two-particle direct correlati
functions of a uniform binary mixture of unequal sized ha
spheres are available within the Percus-Yevick approxim
tion. The expressions are given by@42,43#

c̃aa;hs
~2! ~ ur2r 8u!5aa1baur2r 8u1d8ur2r 8u3, a51,2

~12!

for ur2r 8u,sa and zero otherwise, while

c̃ab;hs
~2! ~ ur2r 8u!5ag1

U~R!@bR214ld8R31d8R4#

ur2r 8u
,

~13!

for ur2r 8u,s12 and zero otherwise. HereU is the Heaviside
step function, l5usa2sbu/2, R5ur2r 8u2l, s125(s1
1s2)/2, and theg component refers to the species of smal
molecular diameter. The coefficientsaa , ba , b, andd8 de-
pend on the bulk densities of the two components and on
diameter ratio. The analytical expressions of these coe
cients are given in the work of Ashcroft and Langreth@43#.
The above expressions of the two-particle direct correla
functions lead to the following simplified expressions for t
planar averaged weight functionswab(z) @37#
t
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w11~z!5
p

] c̃1
~1!/]r

@a1~s1
22z2!1 2

3 b1~s1
32z3!

1 2
5 d8~s1

52z5!#, z,s1 ~14!

w12~z!5
p

] c̃1
~1!/]r

@a1~s12
2 2z2!1 2

3 bs1
3

12d8ls1
41 2

5 d8s1
5#, z,s12 ~15!

w22~z!5
p

] c̃2
~1!/]r

@a2~s2
22z2!1 2

3 b2~s2
32z3!

1 2
5 d8~s2

52z5!#, z,s2 . ~16!

By integrating the above expressions of the two-parti
hard-sphere direct correlation functions, one obtains exp
expressions of the density derivative] c̃a;hs

(1) /]r for a51,2.
The one-particle hard-sphere correlation functionc̃a;hs

(1) is
then obtained by integrating] c̃a;hs

(1) /]r over density numeri-
cally by following the trapezoidal rule.

We expand the position- and orientation-dependent
vent densityra(z,V) in the basis set of spherical harmoni
as follows@44,45#:

ra~z,V!5(
lm

aa; lm~z!Ylm~V!, ~17!

so that the angle averaged densityra(z)5A4paa;00(z) and
the polarizationPa(z) is related toaa;10(z) by the following
relation:

Pa~z!5A4p

3
maaa;10~z!. ~18!

We next substitute Eq.~17! and the explicit forms of the
angular functionsf110 andf112 into Eq.~8! and carry out the
angular integrations to obtain the following simplified equ
tions for the inhomogeneous solvent density and the po
ization for theath species:

aa;00~z!5
ra;hs~z!

A4p

3Fsinh$b* maE~z!1I a;1~z!1I a;2~z!%

b* maE~z!1I a;1~z!1I a;2~z! G ,
~19a!
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aa;10~z!5~ 3
4 !1/2ra;hs~z!

3Fcosh$b* maE~z!1I a;1~z!1I a;2~z!%

b* maE~z!1I a;1~z!1I a;2~z!

2
sinh$b* maE~z!1I a;1~z!1I a,2~z!%

@b* maE~z!1I a;1~z!1I a;2~z!#2 G ,
~19b!

for z81sa/2,z,z92sa/2 andaa;00(z)5aa;10(z)50, oth-
erwise.E(z) is the total electrostatic field generated by t
two metal surfaces andI a;1(z) and I a;2(z) are given by

I a;1~z!5 (
b51

n E dz8ab;10~z8!cab
110~z2z8! ~20a!

and

I a;2~z!5 (
b51

n E dx dy dr 8ab;10~z8!ca,b
112~ ur2r 8u!

3S 3uz2z8u2

ur2r 8u2
21D , ~20b!

wherecab
110(z2z8) is obtained fromcab

110(ur2r 8u) by integrat-
ing overx andy coordinates. One can also derive an expr
sion for the quantitŷ cosua&z, the average value of cosua
for a solvent molecule of speciesa at positionz from the
surface. The expression of^cosua&z is given by

^cosua&z5L@b* maE1I a;1~z!1I a;2~z!#, ~21!

where L refers to the Langevin function, defined asL(x)
5coth(x)2x21. Equations~17!–~21! constitute a set of non
linear equations for the calculation of the interfacial struct
of a mixed dipolar solvent near a metal surface. The ab
equations can be solved iteratively once the metal elec
static potential E(z) is known. We note thatE(z)
52(]/]z)V(z), whereV(z) is the metal electrostatic poten
tial which satisfies the Poisson equation

d2

dz2 V~z!524prc~z!, ~22!

whererc(z) is the charge density of the metal. An explic
modeling of the electronic structure of the metal is now n
essary in order to calculate the charge density at the m
field. Following Berardet al. @1#, we model the metal walls
by semi-infinite jellium slabs of width 2zw . The jellium
model consists of a uniform background of positive cha
densityr1 which represents the metal nuclei and core el
trons and the associated valence electron densityre(z). The
valence electron density is calculated by using density fu
tional theory@46,47#. In this approach, the electron density
calculated by solving the effective one-electron Schro¨dinger
equation

2
\2

2me

d2

dz2 cn~z8!1Veff~z8!cn~z8!5encn~z8!, ~23!

wherecn anden are the one-electron normalized eigenfun
tion and energy eigenvalues for thenth state andme is the
-

e
e

o-

-
tal

e
-

c-

-

mass of an electron.z8 denotes thez coordinate with origin
at the center of the metal slab.Veff(z8) is the effective poten-
tial which is given by

Veff~z8!5Vjel~z8!1Vxc~z8!1Vdip~z8!, ~24!

where Vjel(z8) represents instantaneous interaction of
electron with the field of the jellium,Vxc(z8) is the exchange
and correlation potential, andVdip(z8) is the average interac
tion energy of the electron with the dipolar solvents. T
valence electron densityre(z8) is given by

re~z8!5
me

p\2 (
en,eF

~eF2en!ucn~z8!u2, ~25!

where eF is the Fermi energy which is obtained from th
following equation

eF5
2p\2r1zw

menF
1 (

en,eF

en

nF
, ~26!

wherenF is the number of eigenstates with energyen,eF .
Equation~26! is obtained by using the charge neutrality co
dition.

In the present work, we have used the local density
proximation with Wigner’s expression for the exchange a
correlation energy@48#

Vxc~z8!52e2F 0.611

r s~z8!
10.147

4r s~z8!123.4a0

@r s~z8!17.8a0#2G , ~27!

wherer s(z8)5@4pre(z8)/3#21/3, e is the magnitude of elec
tronic charge, anda0 is the Bohr radius. The interaction o
an electron with the solvent dipoles is given by@1#

Vdip~z8!5
2pe

3 (
a

ramaF E
0

z8
gwa

011~z!dz2E
z8

`

gwa
011~z!dzG ,

~28!

wheregwa
011(z) is the~011! component of the following Leg-

endre polynomial expansion of the correlation function b
tween the metal and the solvent speciesa:

gwa~z,u!5(
n

~21!ngwa
011~z!Pn~cosu!, ~29!

where Pn(cosu) is the Legendre polynomial of ordern.
Clearly, the metal potential depends on the structure of
dipolar mixture which, in turn, depends on the potential
the metal surface. Thus, the above equations for the m
potential and the solvent structure are solved s
consistently through iteration. Initially, the metal potential
calculated by replacing the dipolar mixture by vacuum. T
dipolar mixture was then introduced and Eq.~19! was solved
for the solvent density and polarization. After this initial ca
culation,Vdip(z8) was evaluated using Eq.~28! and the new
electron distribution was calculated by solving Eqs.~23! and
~25!. The metal potential was calculated from the new el
tron distribution by using Eq.~22! and the corresponding
metal field was used in the next set of solutions of Eq.~19!
and this iterative process was continued until converge
was attained.
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The systems studied in this work are specified by the v
ues of the following reduced parameters: the bulk density
speciesa, ra* 5rasa

3; the dipole moment of a molecule o
speciesa, ma* 5Ama

2/kBTsa
3; the molecular size ratio,G

5s2 /s1 ; and the reduced Wigner-Seitz radius of the me
r s* 5r s /a0 , wherea0 is the Bohr radius. In the numerica
calculations, we have used three different values ofr s* . The
values of the other parameters characterizing the two sol
species are r1* 50.11, r2* 50.63, m1* 50.65, m2* 51.29,
and G51.5. The results of the inhomogeneous density a
polarization are discussed in terms of the reduced quanti
ra(z)* 5ra(z)sa

3 andPa(z)* 5Pa(z)Asa
3/kBT.

III. MONTE CARLO SIMULATIONS

The results computed with the theory described above
compared with those obtained from a Monte Carlo simu
tion of a dipolar mixture confined between two metal s
faces. The dipolar mixture is characterized by the same
rameters as described above and the metal surface
reduced Wigner-Seitz radiusr s* 52.65. The separation be
tween the two surfaces is taken to be large enough so tha
solvation zone at one surface is not affected by the other
a region of homogeneous bulk density is obtained in
middle region of the simulated system. The simulation
carried out with a total of 256 molecules~93 of species 1 and
163 of species 2! in a rectangular box with dimensionL
3L3h, whereh is the separation between the walls andL is
the length of the central simulation box inx andy directions.
The walls are located atz50 andz510.5s1 and the periodic
boundary conditions are set at 0 and 9.1s1 along x and y
directions. This ensures a bulk region of homogeneous d
sities r1* 50.11 andr2* 50.63 in the middle region of the
simulation system. In the simulation, the long-range dipo
interactions are treated by using the Ewald summation~slab
adapted! method@49#. The Ewald parameters employed a
the convergence parametera/L56.4, a reciprocal space cu
off of 15s1

21, ande85`, wheree8 is the dielectric constan
of the medium that surrounds the infinite array of perio
cally replicated systems. The minimum image convent
was used for the real-space portion of the Ewald sum.

Initially the electrostatic potential of the metal surfaces
calculated by replacing the dipolar mixture by vacuum. T
dipolar molecules of the two species are then introduced
the system is equilibrated for 25 000 MC passes. The si
lations are continued for another 25 000 MC passes
gwa

011(z) is calculated. After this initial simulation,Vdip(z8) is
calculated using Eq.~28! and the new electron distribution i
calculated by solving Eqs.~23! and~25!. The metal potential
is calculated from the new electron density by using Eq.~22!
and the corresponding metal field is used in the next sim
tion run. This iterative process is continued until conv
gence is reached. After convergence, the simulation is c
tinued for another 50 000 MC passes for the calculation
the interfacial structure. The number densities of the t
solvent species are calculated by computing the ave
number of molecules in slabs of thicknessDz50.02s1 . The
orientational structure of solvent molecules are calculated
finding the solvent polarization along the field direction~z!
which is obtained by calculating the total dipole mome
l-
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along thez direction in different slabs at various distanc
from the solid surfaces.

IV. NUMERICAL RESULTS

In Fig. 1 we have shown the results of the density profi
of the two solvent components near a metal surface for th
different values of the reduced Wigner-Seitz radiusr s*
52.65, 3.0, and̀ . We note thatr s* 5` corresponds to a
nonmetallic or an inert surface. It is seen that the den
profiles of both the species are highly nonuniform near
metal surface. Also, the density of species 1 at the surf
increases slightly with decrease ofr s* which is more clearly
shown in the inset of Fig. 1~a!. However, no noticeable
change in the contact density of species 2 is observed
the decrease ofr s* . The metal electrostatic field at the su
face increases with the decrease ofr s* . The molecules of
species 2 are bigger and thus cannot come as close to
metal as the smaller molecules of the first species 1. A
result, the interfacial molecules of species 2 experienc
weaker field of the metal and hence shows no change
contact density with the decrease ofr s* . Also, the profiles of
ra(z)* show pronounced oscillations in the interfacial r
gion indicating layering of the solvent structure at micr
scopic level induced by the metal field.

We next discuss the results of the polarizations of the t
components which are shown in Fig. 2. The solvent po
izations are found to be most significant near the surface
then they oscillate until the bulk values are reached. T
results of both the species seem to depend rather strong

FIG. 1. The variation of reduced number density of~a! species 1
and ~b! species 2 with distance from the metal surface. The so
long dashed, and short dashed curves are forr s* 52.65, 3.0, and̀ ,
respectively. The reduced distancez* 5z/s1 . Other reduced quan
tities are defined in the text. The inset shows the solvent dens
near the metal surface.
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the strength of the metal field characterized by the value
r s* . Also, the polarization increases with the decrease ofr s*
in a nonlinear fashion. In Fig. 3 we have plotted the quan
^cosua&z againstz for two different values of the Wigner
Seitz radiusr s* . We note that there is no polarization fo
r s* 5` and hencêcosu&z is zero for this particular value o

FIG. 2. The variation of reduced solvent polarization of~a! spe-
cies 1 and~b! species 2 with distance from the metal surface. T
solid and dashed curves are forr s* 52.65 and 3.0, respectively. Th
inset shows the solvent polarization near the metal surface.

FIG. 3. The variation of̂cosua&z of ~a! species 1 and~b! species
2 with distance. The different curves are as in Fig. 2. The in
shows the values of̂cosua&z near the metal surface.
f

yr s* . For smaller values ofr s* , the molecules near the surfac
are found to be significantly oriented.

In Fig. 4 we have compared the theoretical and simulat
results of the density profiles of species 1 and 2 at me
solvent interface forr s* 52.65. In Fig. 5 we have compare
the results for the polarizations of the two components.
nally, in Fig. 6 we have compared the results of the m
fraction of species 1@x15r1 /(r11r2)# at various distances
from the metal surface. The profile of the mole fraction r
veals the extent of selective adsorption at the metal surf
It is seen that the overall agreement between the theore
and the simulation results is quite good. Especially, the
cillatory and layered structure of the density, polarizatio
and mole fraction profiles in the interfacial region is co
rectly predicted by the present theory. We note that
present theory predicts a very small rise in the density
bigger molecules at aroundz'1.6 which is not observed in
the simulation. This small discrepancy can arise from the
of the weighted density approximation for the isotropic de
sities because a similar small rise in the density profile
bigger molecules was also observed in an earlier WD
based study@50# of the structure of binary hard spheres ne
a hard wall at similar densities.

V. SUMMARY AND CONCLUSIONS

We have carried out a theoretical study of the spatial a
orientational structure of a mixed dipolar liquid in conta
with a metal surface. The metal is treated by using the
lium model and quantum density functional theory. Our a
proach to the interfacial structure of the dipolar mixture

e

t

FIG. 4. Comparison of the theoretical and Monte Carlo simu
tion results of the density profiles of~a! species 1 and~b! species 2
of a dipolar mixture in contact with a metal surface characterized
r s* 52.65. The solid curve represents the results of present th
and the circles represent the simulation results. The values of o
parameters are the same as in Fig. 1.
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based on a weighted density approximation for the isotro
part of the solvent density and the anisotropic~or dipolar!
part is calculated by using a perturbative approach. T
theory, however, retains the nonlinear dependence of the
terfacial solvent density and polarization on the metal el
trostatic potential and the intraspecies and interspe
solvent-solvent interactions. The metal potential arises fr
the inhomogeneous electron density at the surface whic
influenced by the solvent mixture and the solvent structu
in turn, is influenced by the metal and the entire system
solved self-consistently until convergence is attained. I
found that the number densities of both the species nea
metal surface are highly nonuniform and oscillatory. T
contact density of smaller molecules at the surface incre
with an increase of surface electrostatic field. However,
such change of the contact density of bigger molecule
found which can be attributed to the larger contact dista
of these molecules from the metal surface. The profile
mole fraction of a component also shows highly oscillato
structure indicating the presence of selective adsorptio
the metal surface. The polarization profiles at the interf
are found to depend nonlinearly with the electrostatic field
the metal and exhibits the presence of pronounced orie
tional order of dipolar molecules near the metal surface. T
is most important in the first layer at the metal surface wh

FIG. 5. Comparison of the theoretical and Monte Carlo simu
tion results of the polarization profiles of~a! species 1 and~b!
species 2 of a dipolar mixture in contact with a metal surface. T
values of the various parameters are the same as in Fig. 4.
m
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the solvent dipoles tend to align parallel to the surface n
mal. The theoretical predictions are compared with the
sults of the MC simulations and a good agreement is fou
for the inhomogeneous density, mole fraction, and polari
tion profiles of both the species in the interfacial region.

Although we are not aware of any experimental study
the structure of mixed solvents near metal surfaces, th
have been a few experimental studies on the spatial and
entational structure of water and aqueous ionic solutions n
charged metal surfaces@18,19,29–31#. Toney and co-
workers @18,19# measured the distribution of water mo
ecules near silver surfaces by means ofin situ x-ray scatter-
ing. They found that the water density near the surface
significantly higher than the bulk density. The density profi
was found to be oscillatory in the vicinity of the metal su
face. Also, pronounced orientational structure was found
interfacial molecules. Similar orientational ordering was a
observed in other experiments@29,30#. However, the degree
of orientational ordering found in these studies was sign
cantly higher than the predictions of the present theory wh
can be attributed to the surface charges of the metal surf
used in the experiments. The metal surface considered in
present theory is uncharged. It would certainly be wor
while to generalize the present theory to calculate the solv
structure near a charged metal surface.

The theoretical study presented here can also be exte
to more complex interfaces. For example, it will be intere
ing to study the structure of electrolyte solutions near
charged metal surface. The role of selective adsorption
solvation at a metal-solvent interface is another import
issue which is not yet investigated. Work in these directio
is in progress.
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FIG. 6. Comparison of the theoretical and simulation results
the mole fraction profile of species 1. The values of the vario
parameters are the same as in Fig. 4.
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