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Structure of a mixed dipolar liquid near a metal surface: A combined approach
of weighted density and perturbative approximations
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We study the interfacial structure of a mixed dipolar liquid in contact with a metal surface by using a
combined approach of the weighted density and the perturbative approximations. Both the molecular size and
the dipole moment of various species can be unequal. The metal surface is treated by using the jellium model.
Explicit numerical results are obtained for the interfacial structure of a binary dipolar liquid in contact with a
metal surface of varying electron density. The theoretical predictions are compared with the results of Monte
Carlo simulations and a good agreement is found for the inhomogeneous density, mole fraction, and polariza-
tion profiles of both the species in the interfacial region.

PACS numbd(s): 68.45.Da, 61.20.Gy

I. INTRODUCTION larger contact distance and hence a weaker electrostatic field
experienced by these molecules. The mole fraction profile
An understanding of the structure and dynamics of dipola@lso shows an oscillatory structure at the interface, indicating
solvents in the vicinity of metal surfaces is extremely impor-the presence of selective adsorption at the metal surface. The
tant for investigations of many electrochemical and surfacéolarization profiles at the interface are found to depend non-
processes. Many recent studies have investigated the strué2€arly with the electrostatic field of the metal and exhibits
tural properties of pure dipolar liquids near metal surfaces byhe presence of pronounced orientational order of dipolar
means of analytical theoriekl—7], computer simulations molecules near the metal surface. This is most important in

[8—17 and also experimentfl8,19. These studies have the first layer at the metal surface where the solvent dipoles

generated significant information about the spatial and orientend to align parallel to the surface normal. . .
We have also carried out a Monte Carlo simulation of a

tational arrangement of dipolar molecules at metal-solven inary dipolar mixture confined between two metal surfaces
interfaces. Several studies have also been carried out on the y dip

o . in order to verify the predictions of the present theory. The
structure of ionic solutions near metal surfa¢28—31. In separation between the two metal surfaces is taken to be

contrast, relatively scant attention has been focused on thﬁjfﬁciently large so that a bulk region of homogeneous den-

structure of mixed dipolar liquids near metal surfaces, deg;, for hoth the species is found in the middle region of the
spite the great importance of such interfaces in electrochemsn jation system. The theoretical predictions are compared
istry and surface science. In fact, we are not aware of anyiin the results of Monte CarleMC) simulations and a good
theoretical study on this problem. Consequently, the meta'agreement is found for the inhomogeneous density, mole
fluid interfacial structure of dipolar mixtures is poorly under- fraction, and polarization profiles of both the species in the
stood. The structure of such an interface is expected to bigterfacial region.

much more complex than that of a pure solvent-metal inter- The organization of the rest of the paper is as follows. In
face because of selective adsoprtion of one species at tf&ec. Il we present the theory and the details of Monte Carlo
surface against the other. This selective adsorption can occgimulations are described in Sec. Ill. The numerical results
due to unequal molecular size and/or unequal polarity ofire discussed in Sec. IV. Our conclusions are summarized in
different components of the mixed solvent. The purpose oSec. V.

the present paper is to present a theoretical study of this

selective adsorption and the detailed microscopic structure of

a metal-solvent interface involving a mixed dipolar liquid. Il. THEORY

The present theory is based on a combined approach of \ye consider a dipolar mixture consisting of nonpolariz-
the weighted density and the perturbative approximations fopp|e dipolar molecules af different species. The molecules
the isotropic and anisotropic parts of the solvent densitiesyre confined between two metal surfaces. The solvent mol-
Both the molecular sizes and the dipole moments of differengqles are modeled as dipolar hard spheres where both the
components can be unequal. Explicit numerical results argyglecular diameter and the dipole moment of various spe-
obtained for the interfacial structure of a binary dipolar lig- cies can be different and they interact through a short-range
uid in contact with a metal surface of varying free-electronparq-sphere interaction and a long-range dipole-dipole inter-
density. The density profiles of both the solvent species argction potential. The dipolar molecules also interact with the
found to be highly inhomogeneous and oscillatory near theo metal surfaces. The interaction of thia dipolar mol-

surface. The contact density of smaller molecules at the Sugcyle of species with the metal surfaces can be written as
face increases with an increase of surface electrostatic field.

However, no such noticeable change of the contact density i , ,
of bigger molecules is found which can be attributed to the Uy o(Zi,€27) = Uy, o(Z,2)) + U, (2 ,0), 1)
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whereu’ and u” represent the interaction with the walls eV, Q[ pa(r,0)])—cP(p'014a)
located atz=z' and z=2Z", respectively. Bothu’ and u”

include a short-range isotropic part and an electrostatic an- " () , ,
isotropic part. The short-range isotropic part is described by :le dr'dQC s(r—r",0,Q07)
a hard-wall-hard-sphere interaction and the anisotropic part

represents the interaction of a dipole with the electrostatic p%O)

field generated by nonuniform electron density of the metal X\ pg(r', Q") — E)
surfaces. Thusyy,. ,(z;,£);) can be written as

®)

whereTZ(r—r’,Q,Q) is the second-order direct correla-
ul (z, Q) =u" (|z—2'|)~E'(z) - u' (2)  tion function between speciesand 3 of the homogeneous
w;al4i 138 wia\l4i i) Mo . . . .
mixture. The z-dependent first-order correlation function
whereul" (|z—2'|) is infinity for |z—2z'|<o,/2 and zero c{’(z,9) can be obtained by integrating E@) over x and
otherwise andE’(z;) is the electric field produced af by Y coordinates. For convenience, we wigig)(r —r’,Q,Q")
the surface charges of the metal wall located’at o, and  in terms of angular functions as follows:
u, are, respectively, the diameter and dipole vector of a

solvent molecule of species with ori_e_ntationQ. _ _ ’6512';([‘_r’,Q'Q’):C?I%O(“_r’D
We denotep,(r,Q)) as the position- and orientation- “
dependent number density of specief the mixture. In +epg(lr=r')¢™%0,Q")

density-functional theoryDFT), the grand potential of this
system at fixed temperature, volume, external field, and
chemical potential can be exactly expressed as a functional

+ct A r—r' ) oA Q, Q" F), (6)

of the inhomogeneous density distribution where the angular functiongp*9Q,Q")=(x-4') and
_ HU Q0" 1) =3(@-P) (&' 1)~ (a-4'), i and i’ are
Qlp(r,Q)]=F[p,(r,Q2)] the unit vectors along dipole moments of particles located at

randr’, and?=(r—r')/[r—r'[. In Eq. (6), co(|r—r])
represents the isotropic or hard-sphere part and the second
and third terms represent the anisotropic or dipolar parts of
the intraspecies and interspecies direct correlation functions,
(3 whose analytical solutions are available within integral equa-

whereu,,.,(r,Q) is the interaction potential between a mol- Eﬁg;??ggfgasum as the mean spherical approximation

ecule of speciesr and the metal wall as given by Eq4)
and(2), u, is the chemical potential of species andT is

the temperature. The intrinsic Helmholtz free energyinhomo eneous density is obtained by evaluating the corre-
Flp.(r,Q)] is a universal functional of density and consists 9 Y y 9

of two parts: an ideal part and an excess part. Minimizing theP°nding expres_smngl) for the homogeneous fluid at an
grand potential of Eq(3) with respect to density and evalu- €ffective densityp,(r,Q). Thus, we write

ating the chemical potential for the uniform mixture, one

obtains the following expression for the equilibrium density eI, Q[ p(r, )] —c P (p/4m)

of speciesx in presence of the metal surface:

+ 2, | drdQ po(r0)[Upa(r,0) = ],

Alternatively, one can adopt the weighted density ap-
proximation (WDA) in which c¢{V(r,Q;[ p,.(r,Q)]) for the

=T (a1, 0) TP (p14m). @)
(0)
pa(r, Q)= ypm exd — B*u,(r,Q) WDA has been shown to provide an accurate treatment for

the hard-sphere correlation contributiofi36—39. In the
+c P, Q[ pa(r, O D—cP(p'P/4m)], (4  spirit of earlier work{7,40,41, we decompose the total first-

order direct correlation function into two partsc!?
where * =1/kgT, kg is the Boltzmann constant, is the  =c(1) 4+ ¢(1) wherec}). is the isotropic hard-sphere con-
temperaturep) is the uniform bulk density of specias  tribution to the first-order direct correlation function and
andc{ is the first-order direct correlation function which is ¢(1) represents the remaining anisotrofsic excesscontri-
given by the functional derivative of the excess free energypution which arises from the explicit dipole-dipole electro-
with respect to the density of species[32]. The above static interactions and also from the coupling of electrostatic
equation is a formally exact relation which, in principle, may and hard-sphere interactions. We employ a combined ap-
be solved forp,(r,Q) if the functionalc!™ is known. In  proach in which we evaluate the isotropic hard-sphere con-
practice, howeverc(al) is generally unknown for inhomoge- tribution CE};LS using WDA and the remaining anisotropic part
neous systems and so must be approximated. The simple@gl;éx through a perturbative approach by using an equation
approximation oi:ﬁ,l)(r,Q;[pa(r,Q)]) of an inhomogeneous similar to Eq.(5) but involving only the anisotropic terms of
system involves a perturbative expansioo first ordej in  the second-order direct correlation function.
terms of the density inhomogeneity which makes use of the Since the density inhomogeneity is only along #direc-
second-order direct correlation function of the correspondingion, the expressions for the density of thtéh species can
homogeneous system and is given by now be written in the following form:
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n
whdZ
pa<z,m=”j—ji)exp[—/s*uw;au,nw > fdxdy ¢'dQ Teqgllr—r'L:p% 612,07
=1
+elg?(Ir=r"1:p0) $MAQ, Q" 1)lpp(2 . Q') — piglAm] |, tS)
|
where 0 1) 1 0 W11(Z):ﬁ[al((ﬁ_zz)*‘%bl(ffi_zs)
Pand ) =p eXp{T L Pund D1 =Tt Pt} (9) crlop
2410, 5_5
HereT:(al;MFa;hS(z)] refers to the hard-sphere contribution to tsd'(07=2%)), z<0y (14
the first-order correlation function defined through WDA at
an effective densityp,.n{z), which is obtained as the _om 2 o2, 3
We|ghted average W].Z(Z)_ Jég_l)/ap [al(o-lz_z )+§b0’1
n
Pard?)= 2, f A7 pasnd Z Wegl|2=2' [ Paind 2)1. +2d'Noi+id0]], z<o, (19
The weight functionw, 5(z—2") is calculated by following 7 2 a2 3 .3
the prescription of Denton and Ashcr$&7]. In this scheme, W2A2) = ’&Wap [ax(05=2%)+ 3Dy(03—2°)
the weight functions are specified first by normalization con-
dition +2d'(05-2°)], z<o0y,. (16)
f drwgg(r)=1, a,=12 (100 By integrating the above expressions of the two-particle

hard-sphere direct correlation functions, one obtains explicit
which ensures that the approximation is exact in the limit ofexpressions of the density derivati\,ﬁé(al_%s/ap for «=1,2.
a uniform mixture and second by requiring that the first func-the one-particle hard-sphere correlation functigif). is
tional derivatives o} with respect to the densities yield then obtained by integratings) J/ap over density numeri-
the exact two-particle direct correlation functions in the U”i'cally by following the trapezo?dal rule.
form limit. One then obtains the following analytic forms for  \y/e expand the position- and orientation-dependent sol-

the weight functions vent densityp,(z,Q)) in the basis set of spherical harmonics
~ , as follows[44,45:
&2 (r—r) (44,49

"I op 1D

Wop(r—r')=
N o _ Pa(Z.Q)=2 8yim(2)Yim( ), (17)
The analytic solutions for the two-particle direct correlation Im
functions of a uniform binary mixture of unequal sized hard

spheres are available within the Percus-Yevick approximaso that the angle averaged dengity(z) = V4ma,.qo(z) and

tion. The expressions are given p42,43 the polarizatiorP ,(z) is related taa,.;o(z) by the following
() 3 relation:
Coandlr—r'D=a,tb,r—r'[+d'[r=r"[°, a=12
(12)
B 4
for |r—r'|<o, and zero otherwise, while Po(2)=\ 3 HaBa1d2). (18)
2 O(R)[bR?+4Nd'R3+d'R*] , .
CopndIr—r')=a,+ T=r] , We next substitute Eg(17) and the explicit forms of the
r=r 13 angular functionsp**?and ¢**?into Eq.(8) and carry out the

angular integrations to obtain the following simplified equa-
for [r—r’| <oy, and zero otherwise. Hef@ is the Heaviside tions for the inhomogeneous solvent density and the polar-
step function, \=|o,—0gl/2, R=|r—t'| =\, o1,=(0y ization for theath species:

+0,)/2, and they component refers to the species of smaller

molecular diameter. The coefficierag, b,, b, andd’ de- Pund 2)

pend on the bulk densities of the two components and on the  @4:00(2) = —

diameter ratio. The analytical expressions of these coeffi- JVam

cients are given in the work of Ashcroft and Langréd3]. Sinh{B* 1 E(2) + 1 11(2) +1 42(2)}
The above expressions of the two-particle direct correlation - Ea( T > T CE )
functions lead to the following simplified expressions for the B oB(2) T1an(2) + 1 ooz

planar averaged weight functioms, z(z) [37] (193
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aa;lo(z):(g)llzpa;hs(z) mass of an electrorz’ denotes the (?oordinate vyith origin
. at the center of the metal sla¥j.«(z') is the effective poten-
cosh{ B* o E(2) +14,1(2) +1 4;2(2) } tial which is given by

18* ILLQE(Z) +1 a;l(z) +1 a;Z(Z)

sinh{B* 1 ,E(2) +1,,1(2) +1,22)} . . :
B [B* woE(2)+1,1(2)+]1 ,0(2)]% |’ where Vi, (z') represents instantaneous interaction of an
Po @l 2 electron with the field of the jelliumV,(z’) is the exchange
(190 and correlation potential, andy(z') is the average interac-
tion energy of the electron with the dipolar solvents. The
valence electron densiy.(z') is given by

Veil(Z')=Vijel(Z') +Vye(Z") + Vain(Z'), (24)

for z' + 0,/2<z2<z"—0,/2 anda,.o(z) =a,:10(z) =0, oth-
erwise.E(z) is the total electrostatic field generated by the

two metal surfaces anld,.;(z) andl ,.,(z) are given by m
pe(z)=—5 2 (e—elltn(@)? (25

n
lua(2)= 2 f dz'agidz')cig(z—2') (209 en<er
o where e is the Fermi energy which is obtained from the
following equation

and
" 2mh%p .z €
_ ’ INALL2 _ Tw _n
o= 3, [ dxdy d’agadz)ciElr—r) = 3, 29
3|z—2'|? whereng is the number of eigenstates with energy< er .
Ir—r'[? -1, (20D Equation(26) is obtained by using the charge neutrality con-
dition.
wherec3(z—2') is obtained froncX|r —r’|) by integrat- In the present work, we have used the local density ap-

ing overx andy coordinates. One can also derive an expresproximation with Wigner's expression for the exchange and
sion for the quantity cosé,),, the average value of cgg  correlation energy48|

for a solvent molecule of species at positionz from the

surface. The expression ¢€osé,), is given by V(2

<Cosea>2=£[ﬂ*lu’aE+la;l(z)+|a;2(z)]! (21)

wherery(z')=[4mps(z')/3 , eis the magnitude of elec-
where £ refers to the Langevin function, defined 4¢x)  tronic charge, andy, is the Bohr radius. The interaction of
=cothk)—x L. Equations(17)—(21) constitute a set of non- an electron with the solvent dipoles is given [y
linear equations for the calculation of the interfacial structure
of a mixed dipolar solvent near a metal surface. The above JZ’ 0L 7) 7 f‘” 011 )iz
equations can be solved iteratively once the metal electro- 0 Ywa ngW“
static potential E(z) is known. We note thatE(z) 28)
=—(d/9z)V(2), whereV(z) is the metal electrostatic poten-
tial which satisfies the Poisson equation whereglM(z) is the (011) component of the following Leg-
endre polynomial expansion of the correlation function be-
tween the metal and the solvent species

| 0. 4r(z')+23.48,
=—e oy 0 lAr—— o2
r«(z') [rs(z')+7.83]

., (27)

]—1/3

2me
Vdip(Z’): T 2 Pala

d2
ZV@=—4mp(2), (22

_ _ nA01
wherep.(2) is the charge density of the metal. An explicit g""“(z’a)_zn: (=1 gWal(Z)P”(COSG)’ (29)

modeling of the electronic structure of the metal is now nec-
essary in order to calculate the charge density at the metalhere P,,(cosé) is the Legendre polynomial of order.
field. Following Berardet al. [1], we model the metal walls Clearly, the metal potential depends on the structure of the
by semi-infinite jellium slabs of width 2,. The jellium  dipolar mixture which, in turn, depends on the potential of
model consists of a uniform background of positive chargeghe metal surface. Thus, the above equations for the metal
densityp, which represents the metal nuclei and core elecpotential and the solvent structure are solved self-
trons and the associated valence electron depsis). The  consistently through iteration. Initially, the metal potential is
valence electron density is calculated by using density funcealculated by replacing the dipolar mixture by vacuum. The
tional theory[46,47). In this approach, the electron density is dipolar mixture was then introduced and Ef9) was solved
calculated by solving the effective one-electron Sdimger  for the solvent density and polarization. After this initial cal-
equation culation, V4i,(z") was evaluated using E(8) and the new
12 g (ezlle;_);:tr_:_)r? distrib:Jtion W&}SI calculatled Iby Zoflving IE(%S) andI
, , L , . The metal potential was calculated from the new elec-
; ﬁﬁwn(z )+ Ver(Z)Pn(Z') = enthn(Z), (23 4o gistribution by using Eq(22) and the corresponding
metal field was used in the next set of solutions of B®)
wherey,, ande, are the one-electron normalized eigenfunc-and this iterative process was continued until convergence
tion and energy eigenvalues for th¢h state andn, is the  was attained.
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The systems studied in this work are specified by the val- 045F | (q) 050
ues of the following reduced parameters: the bulk density of
speciesa, p’;:paai; the dipole moment of a molecule of
speciesa, u*=\u/kgTo>; the molecular size ratiol’ 0301
=0,/0,; and the reduced Wigner-Seitz radius of the metal,
ri¥=rs/ay, wherea, is the Bohr radius. In the numerical
calculations, we have used three different valuestaf The 0.15
values of the other parameters characterizing the two solvent n
species are p;=0.11, p5=0.63, u} =0.65, u3=1.29,

. . i
andI'=1.5. The results of the inhomogeneous density and 0'08.0 ' 1.|5 3?0 I 4!5 I 6.0
polarization are discussed in terms of the reduced quantities: z*
* 3 * 3

pa(z) _pa(z) (o and Pa(z) - Pa(z) U-a/kBT' 450F ) 5.00

Ill. MONTE CARLO SIMULATIONS i

3.00f
The results computed with the theory described above are 5

compared with those obtained from a Monte Carlo simula- ;’.:. i
tion of a dipolar mixture confined between two metal sur- 150|
faces. The dipolar mixture is characterized by the same pa-
rameters as described above and the metal surface by B
reduced Wigner-Seitz radiust =2.65. The separation be- 0.0Q L N

1
00 1.5 30 45 6.0

tween the two surfaces is taken to be large enough so that the 2%

solvation zone at one surface is not affected by the other and
a region of homogeneous bulk density is obtained in the FIG. 1. The variation of reduced number densitfa@fspecies 1
middle region of the simulated system. The simulation isand (b) species 2 with distance from the metal surface. The solid,
carried out with a total of 256 molecul€33 of species 1 and long dashed, and short dashed curves are fer2.65, 3.0, ande,
163 of species Rin a rectangular box with dimensioh respectively. The reduced distanc’e=2z/o, . Other reduced quan-
X LXh, whereh is the separation between the walls dnd tities are defined in the text. The inset shows the solvent densities
the length of the central simulation boxxrandy directions.  near the metal surface.
The walls are located at=0 andz=10.50; and the periodic
boundary conditions are set at 0 and®,lalongx andy  along thez direction in different slabs at various distances
directions. This ensures a bulk region of homogeneous derfrom the solid surfaces.
sities py =0.11 andp3 =0.63 in the middle region of the
simulation system. In the simulation, the long-range dipolar IV. NUMERICAL RESULTS
interactions are treated by using the Ewald summa(tstetb _ _ i
adaptedl method[49]. The Ewald parameters employed are In Fig. 1 we have shown the results of the density profiles
the convergence parametetL = 6.4, a reciprocal space cut- of the two solvent components near a metal sgrface for three
off of 150 %, ande’ =, wheree' is the dielectric constant different values of the reduced Wigner-Seitz raditfs
of the medium that surrounds the infinite array of periodi-=2-65, 3.0, and=. We note thatr{ =< corresponds to a
cally replicated systems. The minimum image conventiorﬂonmeta"'c or an inert §urface. It is seen th'at the density
was used for the real-space portion of the Ewald sum. profiles of both the species are highly npnunlform near the
Initially the electrostatic potential of the metal surfaces ismetal surface. Also, the density of species 1 at the surface
calculated by replacing the dipolar mixture by vacuum. Theincreases slightly with decrease df which is more clearly
dipolar molecules of the two species are then introduced anshown in the inset of Fig. (&). However, no noticeable
the system is equilibrated for 25000 MC passes. The simuchange in the contact density of species 2 is observed with
lations are continued for another 25000 MC passes anthe decrease afy . The metal electrostatic field at the sur-
99H(2) is calculated. After this initial simulation/q,(z') is  face increases with the decreasergf. The molecules of
calculated using Eq28) and the new electron distribution is species 2 are bigger and thus cannot come as close to the
calculated by solving Eq$23) and(25). The metal potential metal as the smaller molecules of the first species 1. As a
is calculated from the new electron density by using®§)  result, the interfacial molecules of species 2 experience a
and the corresponding metal field is used in the next simulaweaker field of the metal and hence shows no change of
tion run. This iterative process is continued until conver-contact density with the decreasergf. Also, the profiles of
gence is reached. After convergence, the simulation is corp,(z)* show pronounced oscillations in the interfacial re-
tinued for another 50 000 MC passes for the calculation ofjion indicating layering of the solvent structure at micro-
the interfacial structure. The number densities of the twascopic level induced by the metal field.
solvent species are calculated by computing the average We next discuss the results of the polarizations of the two
number of molecules in slabs of thicknesgs=0.020,. The = components which are shown in Fig. 2. The solvent polar-
orientational structure of solvent molecules are calculated bjzations are found to be most significant near the surface and
finding the solvent polarization along the field directi@  then they oscillate until the bulk values are reached. The
which is obtained by calculating the total dipole momentresults of both the species seem to depend rather strongly on
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FIG. 2. The variation of reduced solvent polarization(@fspe- FIG. 4. Comparison of the theoretical and Monte Carlo simula-

cies 1 andb) species 2 with distance from the metal surface. Thetion results of the density profiles ¢) species 1 an¢b) species 2
solid and dashed curves are fdr=2.65 and 3.0, respectively. The of a dipolar mixture in contact with a metal surface characterized by
inset shows the solvent polarization near the metal surface. r¥=2.65. The solid curve represents the results of present theory

and the circles represent the simulation results. The values of other
the strength of the metal field characterized by the value oparameters are the same as in Fig. 1.

rs . Also, the polarization increases with the decrease;of
in a nonlinear fashion. In Fig. 3 we have plotted the quantityr ¥ . For smaller values af? , the molecules near the surface
(coséb,), againstz for two different values of the Wigner- are found to be significantly oriented.
Seitz radiusr} . We note that there is no polarization for  In Fig. 4 we have compared the theoretical and simulation
rs = and hencécosé), is zero for this particular value of results of the density profiles of species 1 and 2 at metal-
solvent interface for% =2.65. In Fig. 5 we have compared
@ 040 the results for the polarizations of the two components. Fi-
2 nally, in Fig. 6 we have compared the results of the mole
i 020F  ~x fraction of species [Ix;=p41/(p1+p,)] at various distances
from the metal surface. The profile of the mole fraction re-
veals the extent of selective adsorption at the metal surface.
It is seen that the overall agreement between the theoretical
and the simulation results is quite good. Especially, the os-
cillatory and layered structure of the density, polarization,
and mole fraction profiles in the interfacial region is cor-
rectly predicted by the present theory. We note that the
present theory predicts a very small rise in the density of
bigger molecules at arourzd= 1.6 which is not observed in

<c0s 01>

020 the simulation. This small discrepancy can arise from the use
of the weighted density approximation for the isotropic den-
A 010 sities because a similar small rise in the density profile of
) bigger molecules was also observed in an earlier WDA-
g based study50] of the structure of binary hard spheres near
v

000 a hard wall at similar densities.

V. SUMMARY AND CONCLUSIONS

-0.10 N T E—
00 15 30 45 60

Z*

We have carried out a theoretical study of the spatial and
orientational structure of a mixed dipolar liquid in contact

FIG. 3. The variation ofcosé,), of (a) species 1 an¢b) species ~ With a metal surface. The metal is treated by using the jel-
2 with distance. The different curves are as in Fig. 2. The inselium model and quantum density functional theory. Our ap-
shows the values gfcosé,), near the metal surface. proach to the interfacial structure of the dipolar mixture is
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100 (b)
) FIG. 6. Comparison of the theoretical and simulation results of
3 the mole fraction profile of species 1. The values of the various
*~ 060k parameters are the same as in Fig. 4.
< 0
o N the solvent dipoles tend to align parallel to the surface nor-
020l mal. The theoretical predictions are compared with the re-
sults of the MC simulations and a good agreement is found
- for the inhomogeneous density, mole fraction, and polariza-
-0.280 55525 80 tion profiles of both the species in the interfacial region.

7% Although we are not aware of any experimental study on
the structure of mixed solvents near metal surfaces, there
FIG. 5. Comparison of the theoretical and Monte Carlo simula-have been a few experimental studies on the spatial and ori-
tion results of the polarization profiles @f) species 1 andb) entational structure of water and aqueous ionic solutions near
species 2 of a dipolar mixture in contact with a metal surface. Thecharged metal surface$18,19,29-3]. Toney and co-
values of the various parameters are the same as in Fig. 4. workers [18,19 measured the distribution of water mol-
ecules near silver surfaces by meansno§itu x-ray scatter-

based on a weighted density approximation for the isotropiér?g' _'I_'hey fou_nd that the water dens!ty near the _surface_ IS
part of the solvent density and the anisotrofic dipolap significantly higher th_an the l_aulk dens_|ty. The density profile
part is calculated by using a perturbative approach. Th as found to be oscnlatory in the vicinity of the metal sur-

theory, however, retains the nonlinear dependence of the if&°¢: AI.SO’ pronounced_onentat_mnal structure was found for
terfacial solvent density and polarization on the metal elec/nterfacial 'molecules. Slr_nllar orientational ordering was also
trostatic potential and the intraspecies and interspecie bse_rved In other experlmer{129_,3(]. Howeve_r, the deg_ree__

solvent-solvent interactions. The metal potential arises fror‘rﬁ)f orientational ordering found in these studies was signifi-

the inhomogeneous electron density at the surface which i antly highfar than the predictions of the present theory which
influenced by the solvent mixture and the solvent structurec@n be attributed to the surface charges of the metal surfaces

in turn, is influenced by the metal and the entire system i sed in the expgriments. The metal surface cpnsidered in the
solved self-consistently until convergence is attained. It igresent theory IS uncharged. It would certainly be worth-
found that the number densities of both the species near tﬁ/é(hlle to generalize the present theory to calculate the solvent
metal surface are highly nonuniform and oscillatory. TheStructure near a charged metal surface.

contact density of smaller molecules at the surface increases The theoreucall study presented here can allso be. extended
with an increase of surface electrostatic field. However, nd® Mo'e complex interfaces. For example, it W'”.be Interest-
such change of the contact density of bigger molecules ihg to study the structure of electrolyte s_,olutlons near a
found which can be attributed to the larger contact distanc&harged metal surface. The _role of se_lect|ve ads_orptlon n
of these molecules from the metal surface. The profile otSOIVat'On. at a metal-slolvent_ interface is .another |mp0(tant
mole fraction of a component also shows highly oscillatory!ss_ue which is not yet investigated. Work in these directions
structure indicating the presence of selective adsorption ae N Progress.
the metal surface. The polarization profiles at the interface

are found to depend nonlinearly with the electrostatic field of

the metal and exhibits the presence of pronounced orienta- The financial support of the Council of Scientific and In-
tional order of dipolar molecules near the metal surface. Thiglustrial ResearcfiCSIR), Government of India, is gratefully
is most important in the first layer at the metal surface whereacknowledged.
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